In this analysis all Micro-Pk studies of the LMU Micro-Pk Lab are included that hypothesize the presence of an effect. In studies comparing experimental to control conditions, only the experimental conditions are included. The effect size for “Smokers 1” is inverted, since a two-tailed hypothesis was formulated and the resulting effect was negative. All other studies/conditions have directional hypotheses.
st <-readRDS("data/overview.rds")# Select studies / conditionsdata <-subset(st, st$Experimental ==TRUE)knitr::kable(data)
Study
Experimental
N
Trials
M
SD
Hits (%)
t
p
ES
Var
BF
Direction
Year
Labstudy
1
Loving Kind
TRUE
171
100
49.725146
4.930148
49.72515
-0.7290206
0.7665039
-0.0557496
0.0058570
0.3034712
greater
2016
TRUE
2
Prayer
TRUE
431
100
49.638051
4.805892
49.63805
-1.5635507
0.9406706
-0.0753136
0.0023268
0.1448423
greater
2017
FALSE
3
Monks T1 Exp
TRUE
23
400
202.347826
6.859689
50.58696
1.6414415
0.0574628
0.3422642
0.0460249
1.8155253
greater
2016
TRUE
5
Monks T2 Exp
TRUE
23
400
201.347826
8.020478
50.33696
0.8059304
0.2144544
0.1680481
0.0440922
1.0456588
greater
2016
TRUE
8
Meditation T2
TRUE
48
100
50.229167
4.539377
50.22917
0.3497646
0.3640389
0.0504842
0.0208599
0.7452738
greater
2016
FALSE
9
Sound preference
TRUE
70
40
20.314286
2.931799
50.78571
0.8968906
0.1864480
0.1071989
0.0143678
1.2000567
greater
2017
TRUE
10
All-will-be-good
TRUE
38
100
49.710526
5.098531
49.71053
-0.3499901
0.6358347
-0.0567759
0.0263582
0.4729100
greater
2016
TRUE
11
One-armed Bandit
TRUE
40
200
101.125000
6.181807
50.56250
1.1509781
0.1283746
0.1819856
0.0254140
1.2718689
greater
2017
TRUE
12
Coin Toss
TRUE
40
200
100.525000
7.709427
50.26250
0.4306924
0.3345315
0.0680985
0.0250580
0.8018915
greater
2017
TRUE
13
Incongruence Exp
TRUE
236
10
5.182203
1.577994
51.82203
1.7738101
0.0386948
0.1154652
0.0042655
2.2417309
greater
2017
FALSE
15
Smokers 1 Exp
TRUE
122
400
196.704918
9.874157
50.82377
-3.6859216
0.0003423
-0.3337077
0.0086531
66.0635985
different
2015
TRUE
17
Smokers 2 Exp
TRUE
175
400
200.291429
10.375185
49.92714
0.3715825
0.6446721
0.0280890
0.0057165
0.0902946
less
2016
TRUE
19
Smokers 3
TRUE
203
400
199.137931
10.111786
50.21552
-1.2146808
0.1129529
-0.0852539
0.0049440
0.3958797
less
2017
TRUE
20
Psyscanner Style 1 Exp
TRUE
1400
30
15.180000
2.678728
50.60000
2.5142470
0.0060201
0.0671961
0.0007159
10.4147205
greater
2018
FALSE
22
Psyscanner Style 2 Exp
TRUE
1308
30
15.058104
2.707860
50.19368
0.7760390
0.2189332
0.0214575
0.0007647
0.4976420
greater
2018
FALSE
24
Psyscanner Style 3 Exp
TRUE
1462
30
15.048564
2.735118
50.16188
0.6789043
0.2486530
0.0177556
0.0006841
0.4146918
greater
2018
FALSE
26
Relaxation
TRUE
12571
100
50.017739
5.061680
50.01774
0.3929391
0.3471856
0.0035046
0.0000795
0.0993029
greater
2016
FALSE
27
Priming 1 Exp
TRUE
4092
20
10.102395
2.265882
50.51197
2.8907394
0.0019318
0.0451899
0.0002446
19.8004286
greater
2018
FALSE
29
Priming 2 Exp
TRUE
2063
20
9.961222
2.232693
49.80611
-0.7888809
0.7848638
-0.0173685
0.0004848
0.0884220
greater
2018
FALSE
31
Priming 3 Exp
TRUE
6099
20
9.964092
2.314666
49.82046
-1.2115083
0.8871262
-0.0155130
0.0001640
0.0364067
greater
2019
FALSE
33
Priming 4 Exp
TRUE
4060
20
9.995567
2.189693
49.97783
-0.1290108
0.5513223
-0.0020247
0.0002463
0.0840137
greater
2020
FALSE
35
Erotic Images 1
TRUE
241
200
100.510373
7.315573
50.25519
1.0830494
0.1399367
0.0697653
0.0041595
0.9734614
greater
2017
FALSE
36
Erotic Images 2
TRUE
678
50
25.128319
3.524935
50.25664
0.9478799
0.3435288
0.0364031
0.0014759
0.6359922
greater
2017
FALSE
Forest Plot
The forest plot visually represents the effect sizes and confidence intervals for each study.
#Frequentist m-a with metafor library(metafor)# Specify parameters of Exp Studiesyi=data$ESvi=data$Varstudies=data$Study# invert ES of Smokers 1, since the hypothesis was two-sided and the results showed a negative effect (smokers are avoiding smoking-related images)yi[which(studies =="Smokers 1 Exp")] <--yi[which(studies =="Smokers 1 Exp")]# Recommended method = REML: Langan et al. 2018 https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1316# knha = Hartung method to control ES non-normality Rubio-Aparicio et al. 2018res <-rma( yi, vi, method="REML",#mods = ~ data$Labstudy,knha=TRUE,slab=paste(studies) )# forest plotforest(res, xlab="ES", mlab="RE", psize=1,ilab = data$N, ilab.lab ="N",header=T, shade=T)
Summary Statistics
These are the results of the meta-analysis. The model results reflect the overall estimated effect size, its confidence interval and whether it differs significantly from 0.
The Tau² represents the between-study variance, and the I² the heterogeneity. A significant test for Heterogeneity indicates a genuine variability of true effects across studies.
summary.rma(res)
Random-Effects Model (k = 23; tau^2 estimator: REML)
logLik deviance AIC BIC AICc
23.2993 -46.5986 -42.5986 -40.4165 -41.9671
tau^2 (estimated amount of total heterogeneity): 0.0006 (SE = 0.0005)
tau (square root of estimated tau^2 value): 0.0252
I^2 (total heterogeneity / total variability): 45.34%
H^2 (total variability / sampling variability): 1.83
Test for Heterogeneity:
Q(df = 22) = 43.4629, p-val = 0.0041
Model Results:
estimate se tval df pval ci.lb ci.ub
0.0170 0.0115 1.4729 22 0.1549 -0.0069 0.0409
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Funnel Plot
# funnel plot (publication bias)funnel(res)
In this analysis all Micro-Pk studies of the LMU Micro-Pk Lab are included that hypothesize the absence of an effect. In studies comparing experimental to control conditions, only the control conditions are included.
The forest plot visually represents the effect sizes and confidence intervals for each study.
#Frequentist m-a with metafor library(metafor)# Specify parameters of Exp Studiesyi=data$ESvi=data$Varstudies=data$Study# Recommended method = REML: Langan et al. 2018 https://onlinelibrary.wiley.com/doi/10.1002/jrsm.1316# knha = Hartung method to control ES non-normality Rubio-Aparicio et al. 2018res <-rma( yi, vi, method="REML",#mods = ~ data$Labstudy,knha=TRUE,slab=paste(studies) )# forest plotforest(res, xlab="ES", mlab="RE", psize=1,ilab = data$N, ilab.lab ="N",header=T, shade=T)
Summary Statistics
These are the results of the meta-analysis. The model results reflect the overall estimated effect size, its confidence interval and whether it differs significantly from 0.
The Tau² represents the between-study variance, and the I² the heterogeneity. A significant test for Heterogeneity indicates a genuine variability of true effects across studies.
summary.rma(res)
Random-Effects Model (k = 13; tau^2 estimator: REML)
logLik deviance AIC BIC AICc
17.2904 -34.5808 -30.5808 -29.6110 -29.2474
tau^2 (estimated amount of total heterogeneity): 0.0006 (SE = 0.0006)
tau (square root of estimated tau^2 value): 0.0235
I^2 (total heterogeneity / total variability): 42.66%
H^2 (total variability / sampling variability): 1.74
Test for Heterogeneity:
Q(df = 12) = 18.7120, p-val = 0.0957
Model Results:
estimate se tval df pval ci.lb ci.ub
-0.0051 0.0109 -0.4704 12 0.6465 -0.0290 0.0187
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1